安装依赖
sudo apt-get install libgl1-mesa-glx libegl1-mesa libxrandr2 libxrandr2 libxss1 libxcursor1 libxcomposite1 libasound2 libxi6 libxtst6
下载安装文件
安装
chmod +x Anaconda3-2019.10-Linux-x86_64.sh
./Anaconda3-2019.10-Linux-x86_64.sh
开始是一堆霸王条款,一直回车,然后输入yes
Please answer 'yes' or 'no':'
>>> yes
然后选择安装路径,默认就好,直接回车,等待安装即可。
新建环境
conda create --name obj_detection python=3.6
激活环境
conda activate obj_detection
git clone https://github.com/tensorflow/models.git
pip install Cython contextlib2 pillow lxml jupyter matplotlib absl-py tensorflow==1.14
注:由于默认下载最新的tensorflow2,由于keras为tf2的御用接口框架,于是slim就找不到了,而且包的结构发生了翻天覆地的变化,找不到tf.contrib了,说白了tf2和tf1是两个不兼容的框架,而该项目是用tf1写的,所以我们指定一个tf1的版本。
当然如果你的机器有gpu想用gpu训练的话,请安装gpu版的tensorflow
pip install tensorflow-gpu==1.14
解压后改名字为protoc
,然后复制到刚刚下载的models
项目的research
目录下,然后在research
目录下运行:
./protoc/bin/protoc object_detection/protos/*.proto --python_out=.
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim
python setup.py build
python setup.py install
运行如下Python文件检验环境是否正确
python object_detection/builders/model_builder_test.py
成功的话是这样的:
[此处省略部分打印信息...]
Ran 17 tests in 0.228s
OK (skipped=1)
数据集分为训练、验证、测试
import os
import random
import time
import shutil
# 所有标注的xml文件目录
xmlfilepath = r'/home/zheshi/h4tv/datasets/VOCdevkit/VOCBall2k/Annotations'
# 分割数据集后存储的xml文件路径,会存放在这个路径下分成train validation test三个目录
saveBasePath = r"/home/zheshi/h4tv/datasets/VOCdevkit/VOCBall2k/VienDataset/Annotations"
# 分割比例
trainval_percent = 0.9
train_percent = 0.85
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
print("train and val size", tv)
print("train size", tr)
start = time.time()
test_num = 0
val_num = 0
train_num = 0
for i in list:
name = total_xml[i]
if i in trainval: # train and val set
if i in train:
directory = "train"
train_num += 1
xml_path = os.path.join(saveBasePath, directory)
print(xml_path)
if (not os.path.exists(xml_path)):
os.mkdir(xml_path)
filePath = os.path.join(xmlfilepath, name)
newfile = os.path.join(saveBasePath, os.path.join(directory, name))
shutil.copyfile(filePath, newfile)
else:
directory = "validation"
xml_path = os.path.join(saveBasePath, directory)
print(xml_path)
if (not os.path.exists(xml_path)):
os.mkdir(xml_path)
val_num += 1
filePath = os.path.join(xmlfilepath, name)
newfile = os.path.join(saveBasePath, os.path.join(directory, name))
shutil.copyfile(filePath, newfile)
else: # test set
directory = "test"
xml_path = os.path.join(saveBasePath, directory)
print(xml_path)
if (not os.path.exists(xml_path)):
os.mkdir(xml_path)
test_num += 1
filePath = os.path.join(xmlfilepath, name)
newfile = os.path.join(saveBasePath, os.path.join(directory, name))
shutil.copyfile(filePath, newfile)
# End time
end = time.time()
seconds = end - start
print("train total : " + str(train_num))
print("validation total : " + str(val_num))
print("test total : " + str(test_num))
total_num = train_num + val_num + test_num
print("total number : " + str(total_num))
print("Time taken : {0} seconds".format(seconds))
xml转csv
import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET
def xml_to_csv(path):
xml_list = []
for xml_file in glob.glob(path + '/*.xml'):
print(xml_file)
tree = ET.parse(xml_file)
# print(root.find('filename').text)
for member in root.findall('object'):
value = (root.find('filename').text,
int(root.find('size')[0].text), # width
int(root.find('size')[1].text), # height
member[0].text,
int(member[4][0].text),
int(float(member[4][1].text)),
int(member[4][2].text),
int(member[4][3].text)
)
xml_list.append(value)
column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
xml_df = pd.DataFrame(xml_list, columns=column_name)
return xml_df
def main():
# 这里是存放转换后的三个csv的位置
csv_root = r"/home/zheshi/h4tv/datasets/VOCdevkit/VOCBall2k/VienDataset"
# 这个是上一步存放分割后的三个xml文件夹的路径
annotation_root = r"/home/zheshi/h4tv/datasets/VOCdevkit/VOCBall2k/VienDataset/Annotations"
for directory in ['train', 'test', 'validation']:
xml_path = os.path.join(annotation_root, directory)
xml_df = xml_to_csv(xml_path)
xml_df.to_csv(csv_root + '/ball_{}_labels.csv'.format(directory), index=None)
print('Successfully converted xml to csv.')
main()
image和label数据转为tfrecord格式: generate_tfrecord.py
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
import os
import io
import pandas as pd
import tensorflow as tf
from PIL import Image
from utils import dataset_util
from collections import namedtuple, OrderedDict
flags = tf.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS
# 设置要检测的类型,如果再有就加上elif按照if的格式以此累加,
# 例如elif row_label == 'shit': return 2
def class_text_to_int(row_label, filename):
if row_label == 'ball':
return 1
else:
print("------------------nonetype:", filename)
return None
def split(df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
def create_tf_example(group, path):
with tf.io.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
width, height = image.size
filename = group.filename.encode('utf8')
image_format = b'png'
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = []
for index, row in group.object.iterrows():
xmins.append(row['xmin'] / width)
xmaxs.append(row['xmax'] / width)
ymins.append(row['ymin'] / height)
ymaxs.append(row['ymax'] / height)
classes_text.append(row['class'].encode('utf8'))
classes.append(class_text_to_int(row['class'], group.filename))
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example
def main(_):
writer = tf.io.TFRecordWriter(FLAGS.output_path)
# 训练用的图片的路径
path = '/home/zheshi/h4tv/datasets/VOCdevkit/VOCBall2k/JPEGImages'
examples = pd.read_csv(FLAGS.csv_input)
grouped = split(examples, 'filename')
num = 0
for group in grouped:
num += 1
tf_example = create_tf_example(group, path)
writer.write(tf_example.SerializeToString())
if (num % 100 == 0): # 每完成100个转换,打印一次
print(num)
writer.close()
output_path = os.path.join(os.getcwd(), FLAGS.output_path)
print('Successfully created the TFRecords: {}'.format(output_path))
if __name__ == '__main__':
tf.compat.v1.app.run()
执行代码:
python generate_tfrecord.py --csv_input=data/ball_train_labels.csv --output_path=data/ball_train.tfrecord
其中csv_input
是之前转换的三个csv的路径,output_path
是输出的tfrecord
的路径,train、test、validation需要分别运行一次。
在项目中创建一个存放配置文件的目录,比如命名为vien_data
,然后在其目录下创建标签分类的配置文件label_map.pbtxt
,如果需要检测多个,依次往下排,id依次+1
item {
id: 1
name: 'ball'
}
从项目的models\research\object_detection\samples\configs\ssd_mobilenet_v1_pets.config
复制一份配置的模板文件到vien_data
中,我们就命名为ssd_mobilenet_v1_ball.config
好了,然后修改配置文件。
如果没有预训练的model文件,配置文件中fine_tune_checkpoint
要设置为空。
然后还需要修改训练集和验证集的路径,在文件末尾,修改input_path
为你的训练和测试集的tfrecord路径,label_map_path
为上面创建的label_map.pbtxt
的路径
train_input_reader: {
tf_record_input_reader {
input_path: "/home/zheshi/h4tv/datasets/VOCdevkit/VOCBall2k/VienDataset/ball_train.tfrecord"
}
label_map_path: "/home/zheshi/tensorflow/models/research/object_detection/vien_data/ball_label_map.pbtxt"
}
eval_config: {
metrics_set: "coco_detection_metrics"
num_examples: 1100
}
eval_input_reader: {
tf_record_input_reader {
input_path: "/home/zheshi/h4tv/datasets/VOCdevkit/VOCBall2k/VienDataset/ball_validation.tfrecord"
}
label_map_path: "/home/zheshi/tensorflow/models/research/object_detection/vien_data/ball_label_map.pbtxt"
shuffle: false
num_readers: 1
}
在项目的research
目录下执行(其中train_dir
是训练出来的结果存放的路径,pipeline_config_path
是上面复制修改的配置文件ssd_mobilenet_v1_ball.config
路径):
python legacy/train.py --logtostderr \
--train_dir=/home/zheshi/tensorflow/models/research/object_detection/vien_train_gpu_models \
--pipeline_config_path=/home/zheshi/tensorflow/models/research/object_detection/vien_data/ssd_mobilenet_v1_ball.config
如果遇到ModuleNotFoundError: No module named 'object_detection'
,在research
目录下执行
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim
python setup.py build
python setup.py install
如果没有问题,加载配置后会开始训练,中间过程生成的文件和model都存在刚刚运行训练脚本时设置的vien_train_gpu_models
目录中
可以查看图形化训练状态数据(修改logdir==training:
后面的路径为执行训练脚本设置的vien_train_gpu_models
目录):
tensorboard --logdir==training:/home/zheshi/tensorflow/models/research/object_detection/vien_train_gpu_models --host=127.0.0.1
然后浏览器访问http://127.0.0.1:6006
即可